人臉識(shí)別(Face Recognition)是一種依據(jù)人的面部特征(如統(tǒng)計(jì)或幾何特征等),自動(dòng)進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù),又稱為面像識(shí)別、人像識(shí)別、相貌識(shí)別、面孔識(shí)別、面部識(shí)別等。通常我們所說(shuō)的人臉識(shí)別是基于光學(xué)人臉圖像的身份識(shí)別與驗(yàn)證的簡(jiǎn)稱。
我們覺(jué)得,人臉識(shí)別利用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉圖像進(jìn)行一系列的相關(guān)應(yīng)用操作。技術(shù)上包括圖像采集、特征定位、身份的確認(rèn)和查找等等。簡(jiǎn)單來(lái)說(shuō),就是從照片中提取人臉中的特征,比如眉毛高度、嘴角等等,再通過(guò)特征的對(duì)比輸出結(jié)果。
人臉識(shí)別的一般流程:1)人臉采集:
(1)簡(jiǎn)介:不同的人臉圖像通過(guò)攝像鏡頭采集得到,比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等,當(dāng)采集對(duì)象在設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝人臉圖像。
(2)人臉采集的主要影響因素:圖像大?。喝四槇D像過(guò)小會(huì)影響識(shí)別效果,人臉圖像過(guò)大會(huì)影響識(shí)別速度。非專業(yè)人臉識(shí)別攝像頭常見(jiàn)規(guī)定的小識(shí)別人臉像素為60*60或100*100以上。在規(guī)定的圖像大小內(nèi),算法更容易提升準(zhǔn)確率和召回率。圖像大小反映在實(shí)際應(yīng)用場(chǎng)景就是人臉離攝像頭的距離。圖像分辨率:越低的圖像分辨率越難識(shí)別。圖像大小綜合圖像分辨率,直接影響攝像頭識(shí)別距離?,F(xiàn)4K攝像頭看清人臉的遠(yuǎn)距離是10米,7K攝像頭是20米。光照環(huán)境:過(guò)曝或過(guò)暗的光照環(huán)境都會(huì)影響人臉識(shí)別效果??梢詮臄z像頭自帶的功能補(bǔ)光或?yàn)V光平衡光照影響,也可以利用算法模型優(yōu)化圖像光線。模糊程度:實(shí)際場(chǎng)景主要著力解決運(yùn)動(dòng)模糊,人臉相對(duì)于攝像頭的移動(dòng)經(jīng)常會(huì)產(chǎn)生運(yùn)動(dòng)模糊。部分?jǐn)z像頭有抗模糊的功能,而在成本有限的情況下,考慮通過(guò)算法模型優(yōu)化此問(wèn)題。遮擋程度:五官無(wú)遮擋、臉部邊緣清晰的圖像為佳。而在實(shí)際場(chǎng)景中,很多人臉都會(huì)被帽子、眼鏡、口罩等遮擋物遮擋,這部分?jǐn)?shù)據(jù)需要根據(jù)算法要求決定是否留用訓(xùn)練。采集角度:人臉相對(duì)于攝像頭角度為正臉佳。但實(shí)際場(chǎng)景中往往很難抓拍正臉。因此算法模型需訓(xùn)練包含左右側(cè)人臉、上下側(cè)人臉的數(shù)據(jù)。工業(yè)施工上攝像頭安置的角度,需滿足人臉與攝像頭構(gòu)成的角度在算法識(shí)別范圍內(nèi)的要求。
2)人臉檢測(cè):
(1)簡(jiǎn)介:在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小,并把其中有用的信息挑出來(lái)(如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等),然后利用信息來(lái)達(dá)到人臉檢測(cè)的目的。
(2)人臉關(guān)鍵點(diǎn)檢測(cè)(人臉對(duì)齊):自動(dòng)估計(jì)人臉圖片上臉部特征點(diǎn)的坐標(biāo)。
(3)主流方法:基于檢測(cè)出的特征采用Adaboost學(xué)習(xí)算法(一種用來(lái)分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法)挑選出一些能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。近人臉檢測(cè)算法模型的流派包括三類及其之間的組合:viola-jones框架(性能一般速度尚可,適合移動(dòng)端、嵌入式上使用),dpm(速度較慢),cnn(性能不錯(cuò))。
3)人臉圖像預(yù)處理:
(1)簡(jiǎn)介:基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并服務(wù)于特征提取的過(guò)程。
(2)原因:系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理 的早期階段對(duì)它進(jìn)行灰度矯正、噪聲過(guò)濾等圖像預(yù)處理。
(3)主要預(yù)處理過(guò)程:人臉對(duì)準(zhǔn)(得到人臉位置端正的圖像),人臉圖像的光線補(bǔ)償,灰度變換、直方圖均衡化、歸一 化(取得尺寸一致,灰度取值范圍相同的標(biāo)準(zhǔn)化人臉圖像),幾何校正、中值濾波(圖片的平滑操作以消除噪聲)以及銳化等。
4)人臉特征提取:
(1)簡(jiǎn)介:人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程
(2)人臉特征提取的方法:
1、基于知識(shí)的表征方法(主要包括基于幾何特征法和模板匹配法):根據(jù)人臉器官的形狀描述以及它們之間的距離特性來(lái)獲得有助于人臉?lè)诸惖奶卣鲾?shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率、和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和他們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征。
2、基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法:基于代數(shù)特征方法的基本思想是將人臉在空域內(nèi)的高維描述轉(zhuǎn)化為頻域或者其他空間內(nèi)的低維描述,其表征方法為線性投影表征方法和非線性投影表征方法?;诰€性投影的方法主要有主成分分析法或稱K-L變化、獨(dú)立成分分析法和Fisher線性判別分析法。非線性特征提取方法有兩個(gè)重要的分支:基于核的特征提取技術(shù)和以流形學(xué)習(xí)為主導(dǎo)的特征提取技術(shù)。
5)匹配與識(shí)別:提取的人臉特征值數(shù)據(jù)與數(shù)據(jù)庫(kù)中存貯的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,將相似度與這一閾值進(jìn)行比較,來(lái)對(duì)人臉的身份信息進(jìn)行判斷。