計(jì)算標(biāo)準(zhǔn)偏差
標(biāo)準(zhǔn)偏差(Standard Deviation,SD)是樣本平均數(shù)方差的開平方,它反映組內(nèi)個(gè)體間的離散程度。其計(jì)算公式為
SD = \sqrt{\frac{\sum_{i = 1}^{n}(x_{i}-\bar{x})^{2}}{n – 1}}
<path d="M983 90
l0 -0
c4,-6.7,10,-10,18,-10 H400000v40
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
M1001 80h400000v40h-400000z”>
,其中
二、基于標(biāo)準(zhǔn)誤差計(jì)算誤差棒
計(jì)算標(biāo)準(zhǔn)誤差
標(biāo)準(zhǔn)誤差(Standard Error,SE)表示的是抽樣的誤差。其計(jì)算公式為
SE=\frac{SD}{\sqrt{n}}
<path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z”>
,其中
三、基于置信區(qū)間計(jì)算誤差棒
確定置信水平和相應(yīng)系數(shù)
常見的置信水平有95%,對(duì)應(yīng)的常數(shù)系數(shù)在大樣本情況下約為1.96(不同的樣本量和分布情況可能會(huì)有不同的系數(shù)值)。
計(jì)算置信區(qū)間
若基于標(biāo)準(zhǔn)偏差計(jì)算,置信區(qū)間的計(jì)算公式為
\bar{x}\pm z\times\frac{SD}{\sqrt{n}}
<path d="M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z”>