圖像處理模塊主要涉及圖像去噪、圖像增強(qiáng)與復(fù)原、缺陷的檢測和目標(biāo)分割。
由于現(xiàn)場環(huán)境、CCD圖像光電轉(zhuǎn)換、傳輸電路及電子元件都會(huì)使圖像產(chǎn)生噪聲,這些噪聲降低了圖像的質(zhì)量從而對圖像的處理和分析帶來不良影響,所以要對圖像進(jìn)行預(yù)處理以去噪。圖像增強(qiáng)目是針對給定圖像的應(yīng)用場合,有目的地強(qiáng)調(diào)圖像的整體或局部特性,將原來不清晰的圖像變得清晰或強(qiáng)調(diào)某些感興趣的特征,擴(kuò)大圖像中不同物體特征之間的差別,抑制不感興趣的特征,使之改善圖像質(zhì)量、豐富信息量,加強(qiáng)圖像判讀和識別效果的圖像處理方法。圖像復(fù)原是通過計(jì)算機(jī)處理,對質(zhì)量下降的圖像加以重建或復(fù)原的處理過程。圖像復(fù)原很多時(shí)候采用與圖像增強(qiáng)同樣的方法,但圖像增強(qiáng)的結(jié)果還需要下一階段來驗(yàn)證;而圖像復(fù)原試圖利用退化過程的先驗(yàn)知識,來恢復(fù)已被退化圖像的本來面目,如加性噪聲的消除、運(yùn)動(dòng)模糊的復(fù)原等。圖像分割的目的是把圖像中目標(biāo)區(qū)域分割出來,以便進(jìn)行下一步的處理。
圖像分析模塊主要涉及特征提取、特征選擇和圖像識別。
特征提取的作用是從圖像像素中提取可以描述目標(biāo)特性的表達(dá)量,把不同目標(biāo)間的差異映射到低維的特征空間,從而有利于壓縮數(shù)據(jù)量、提高識別率。表面缺陷檢測通常提取的特征有紋理特征、幾何形狀特征、顏色特征、變換系數(shù)特征等,用這些多信息融合的特征向量來區(qū)可靠地區(qū)分不同類型的缺陷;這些特征之間一般存在冗余信息,即并不能保證特征集是最優(yōu)的,好的特征集應(yīng)具備簡約性和魯棒性,為此,還需要進(jìn)一步從特征集中選擇更有利于分類的特征,即特征的選擇。圖像識別主要根據(jù)提取的特征集來訓(xùn)練分類器,使其對表面缺陷類型進(jìn)行正確的分類識別。
數(shù)據(jù)管理及人機(jī)接口模塊可在顯示器上立即顯示缺陷類型、位置、形狀、大小,對圖像進(jìn)行存儲、查詢、統(tǒng)計(jì)等。
機(jī)器視覺表面缺陷檢測主要包括2維檢測和3維檢測,前者是當(dāng)前的主要表面缺陷檢測方式,也是本文的著重論述之處。
機(jī)器視覺在工業(yè)檢測、包裝印刷、食品工業(yè)、航空航天、生物醫(yī)學(xué)工程、軍事科技、智能交通、文字識別等領(lǐng)域得到了廣泛的應(yīng)用。工業(yè)檢測領(lǐng)域是機(jī)器視覺應(yīng)用中比重最大的領(lǐng)域,主要用于產(chǎn)品質(zhì)量檢測、產(chǎn)品分類、產(chǎn)品包裝等,如:零件裝配完整性檢測,裝配尺寸精度檢測,位置/角度測量,零件識別,PCB板檢測,印刷品檢測,瓶蓋檢測,玻璃、煙草、棉花檢測,以及指紋、汽車牌照、人臉、條碼等識別。表面質(zhì)量檢測系統(tǒng)是工業(yè)檢測的極其重要的組成部分,機(jī)器視覺表面缺陷檢測在許多行業(yè)開始應(yīng)用,涉及鋼板、玻璃、印刷、紡織品、木材、瓷磚、鋼軌等多種關(guān)系國計(jì)民生的行業(yè)和產(chǎn)品。
如果你的工業(yè)生產(chǎn)線中,可能用的到機(jī)器視覺或深度學(xué)習(xí)方面的技術(shù),那不妨和我們盈泰德科技聊聊,我們會(huì)先根據(jù)你的需求分析,從一個(gè)專業(yè)的角度免費(fèi)來給你設(shè)計(jì)一個(gè)合適你的方案,然后聽取你的意見,再詳細(xì)洽談,最后即使沒能達(dá)成合作,我們也非常希望能多認(rèn)識個(gè)朋友。